When do conservation planning methods deliver? Quantifying the consequences of uncertainty
نویسندگان
چکیده
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimplified approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very difficult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation
منابع مشابه
Conservation Planning with Uncertain Climate Change Projections
Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distri...
متن کاملRaising the bar for systematic conservation planning.
Systematic conservation planning (SCP) represents a significant step toward cost-effective, transparent allocation of resources for biodiversity conservation. However, research demonstrates important consequences of uncertainties in SCP and of basing methods on simplified circumstances involving few real-world complexities. Current research often relies on single case studies with unknown forms...
متن کاملاندازهگیری کمّی کیفیت در مهندسی نرمافزار سرویسگرا: روشها، کاربردها و چالشها
Service-oriented software engineering (SOSE) enables rapid and cost-efficient development of distributed software even in heterogeneous environments where deliver its solutions as services. SOSE aims at providing methods and tools to enhance the quality of products and make software development as beneficial as possible. A challenging issue in SOSE is providing services with the required qualit...
متن کاملMaking conservation decisions under uncertainty for the persistence of multiple species.
Population models for multiple species provide one of the few means of assessing the impact of alternative management options on the persistence of biodiversity, but they are inevitably uncertain. Is it possible to use population models in multiple-species conservation planning given the associated uncertainties? We use information-gap decision theory to explore the impact of parameter uncertai...
متن کاملImproved Binary Particle Swarm Optimization Based TNEP Considering Network Losses, Voltage Level, and Uncertainty in Demand
Transmission network expansion planning (TNEP) is an important component of power system planning. Itdetermines the characteristics and performance of the future electric power network and influences the powersystem operation directly. Different methods have been proposed for the solution of the static transmissionnetwork expansion planning (STNEP) problem till now. But in all of them, STNEP pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological Informatics
دوره 4 شماره
صفحات -
تاریخ انتشار 2009